

Communication Satellite Satcom ABC series (2)

Introduction

Payload

Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Antennas

- C-band coverage
- Ku-band coverage
- Bent pipe transponders
 - Receiving and transmission

Payload

- Broadcasting service
 - TV broadcast
 - Internet access
 - Communication network
- Point to point service
 - Microwave radio relay technology
 As complements of terrestrial cables

Bus

CHINA APMT

Platform

- The infrastructure providing locations for payload
- Telemetry and command subsystem
 - Communication with ground control station
 - Supporting tracking and ranging by ground stations
- Electrical power subsystem
 - Solar cells converting solar energy into electrical power
 - Batteries maintaining power during solar eclipse
- Attitude control subsystem
 - Keeping spacecraft in right orbit
 - Pointing antennas in right direction
 - Pointing solar arrays towards the sun

Bus (cont.)

- Thermal control subsystem
 - Keeping all spacecraft parts within acceptable temperature ranges

- Propulsion subsystem
 - Bring spacecraft to desired orbit
 - As actuator for station keeping

Introduction

Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Antennas Onboard

- Reflector Antennas
 - Simplest and most effective for FSS and BSS satellite
- Deployable reflector
 - 2 to 3 meters in diameter
 - Mounted on east and/or west side of S/C body
 - Stowed when launch and deployed in-orbit
 - Fine-tuning footprint pointing
- Steerable antenna
 - ➤ 1 to 1.5 meters in diameter
 - Mounted on earth deck of S/C body
 - Installed with wider moving range
 - ⇒ antenna pointing could be changed in limited directions

Gain and Coverage

CHINA APMT

✤ Antenna gain

- Defined as difference in power received by a directional antenna with an isotropic antenna in the same place sisotropic antenna: radiating same power at all directions
- dBi: decibel gain referenced to an isotropic antenna
 gain of isotropic antenna: 0dBi
- Antenna pattern
 - A map showing antenna designed specification by contour lines through points of equal antenna gains

Gain and Coverage (cont.)

Antenna pattern (cont.)

> Achieved by using multiple feeds system or shaped reflector

Introduction

Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Communication Payload

Transponder

Mainly operating in C-band (6/4 GHz) and Ku-band (14/12 GHz)

CHINA APMT

Basic functions

- Frequency translation
- Power amplification
- Noise filtering
- ✤ Modules
 - Antenna
 - Wideband receiver
 - \Rightarrow LNA and D/C
 - Input and output multiplexer
 - ➤ LCTWTA

⇒ LCAMP (linearizer, FGM/ALC), TWTA

Redundancy

Receiver and LCTWTA

C-band Transponder Gain / Loss BudgetAPMT

Communication Payload (cont.) CHINA APMT

Receiver

- ➤ LNA: low noise amplifier
 - ⇒ Noise figure: < 1.5dB (dominant of the entire system)
- D/C: down converter
 - \Rightarrow C-band: 6 GHz to 4 GHz
 - \Rightarrow Ku-band: 14 GHz to 12 GHz
- 60dB gain: to amplify input signal
- IMUX
 - Input Multiplexer
 - To divide total transmission bandwidth into frequency channels corresponding to the amplification chains
 - Selective filters
 - sufficiently steep slopes to avoid multiple paths through adjacent amplifying chains
 - ⇒ sufficiently flat response curve in the pass band to keep distortions to tolerable levels

Communication Payload (cont.) CHINA APMT

Linearizer

- Increasing linearity performance of the TWTA
- > Maintaining constant phase delay across entire channel
- Adjusting the overall transponder gain level

Communication Payload (cont.) CHINA APMT

TWTA

- Traveling wave tube amplifier
- Non-linear active device
- ➤ Typical gain of 50 to 60 dB

⇒ higher downlink power, higher C/N, higher receive quality

✤ OMUX

- Output Multiplexer
- > TWTA outputs combined together, then into transmit antenna
- Reject the out-of-band harmonics and spurious noises

Ku-band Transponder Gain / Loss BudgetPMT

Introduction

- **Payload**
 - Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Telemetry, Command and Ranging INA APMT

TC&R

- Telemetry, command and ranging
- Providing two-way information flow between S/C and E/S
- ✤ Telemetry
 - Gathering, processing and transmitting S/C data to control station so that S/C configuration and health can be monitored
- Command
 - Decoding and routing uplinked command to target units for S/C re-configuring, re-orienting or re-positioning
- Ranging
 - Providing a path to receive ranging tones and re-transmit them to originating ground control station
 - Range between E/S and S/C can be obtained by comparing phase difference between waveforms of transmit and receive tones

Telemetry

Telemetry circuit

- Gathering operational parameters
- Coding them into telemetry signals
- Transmitting them to the earth

Command

Tele-command circuit

- Receiving command signals from the earth
- Decoding the commands
- Distributing them to relevant subsystems

Ranging

Ranging circuit

Supporting satellite tracking and ranging by control station

UAZ

- Ranging loop
 - ⇒ receiving ranging tone from the earth
 - ⇒ constituting a loop circuit
 - \Rightarrow transmitting it back to the earth 2λ

ranging by measuring range tone phase difference

3λ

CHINA APMT

n

Introduction

- **Payload**
 - Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Electrical Power Subsystem

CHINA APMT

DC power

- A capacity scale of satellite bus
- Typically 2 to 18 kW for communication satellites
- Power subsystem
 - Face-mounted solar panels
 - ⇒ convert solar energy into electrical power
 - ⇒ for payload and bus operation and battery charging
 - Regulator board and associated batteries
 storing and supplying power for usage in eclipse

Solar Arrays and Batteries

CHINA APMT

Solar arrays

- 2 deployable solar wings
- Each wing consists of 3 to 5 panels
- Silicon solar cells: transfer solar energy to electricity
- Each panel is covered with solar cells (silicon or gallium arsenide) connected in series and in parallel
- Aligned with the earth's N-S axis
- Each wing is made to face the sun by an electric step motor which turns at 1rev./24hrs
- Rechargeable batteries
 - Power supply before solar wings deployed
 - Power supply in eclipse
 - \Rightarrow charging at low rate with the sunlight
 - ⇒ discharging to provide electrical power during eclipse period

Page 26

Yearly Variation of Solar Radiation Intersity

E

21 DEC

Solar radiation intensity

Vernal Equinox

21 MAR

See to be

Summer Solstice 21 JUN

Page 27

Sun

- Higher in vernal and autumnal equinoxes than in summer and winter solstices for the variation at sun light angle
 Higher in summer than in winter than in winter
- Higher in summer than in winter for the distances between the sun and the earth

Autumnal Equinox

22 SEP

Life Variation of Solar Array PowerINA APMT

- Solar array power
 - Variation in every year
 - Low down in life time

Introduction

- **Payload**
 - Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

On-station Coordinates

CHINA APMT

Center of

Pitch Asis

Yaw Asta

- Three-dimensional coordinates
 - Carry forward the axes to control the attitude of a plane
- ✤ Roll
 - Pointing to east, the direction of S/C flying to
 - Roll rotation: antenna coverage shifts to N/S
- ✤ Pitch TC&R antenna Ku band antenna Pointing to south yaw/earth Pitch rotation: antenna coverage pitch/south +Z roll/east shifts to E/W +X +Y Y In Orbit Configuration (Whole satellite) C band antenna Yaw Solar Array Pointing to the earth, the direction of S/C floating on Yaw rotation: antenna coverage spins CW/CCW

Attitude Control and Station Keeping APMT

- Attitude and orbit control subsystem
 - Sensors: to measure vehicle orientation
 - Flight software: to offer control algorithm
 - Actuators: to re-orient the S/C, and keep orbital position
- Attitude control
 - Automatically executed by ACS
 - Earth-pointing: keeping antennas in the right directions
 - Sun pointing: positioning solar arrays towards the sun
- Station keeping
 - Manually ordered by TT&C station
 - To counteract the movement of a satellite witch be affected by the gravitational field of the sun, the moon, and the earth
 - The amount of movement can be predicted using some complicated mathematical equations

Equipments of ACS

Sensors

- To detect attitude and position data
- Gyro assembly and fiber optic gyro: offers roll and yaw angles

CHINA APMT

- Sun sensor: transfer orbit
- Earth sensor: offers pitch and roll angles
- Star tracker: roll, yaw and pitch

Actuators

- To apply the torques and forces needed to re-orient the vehicle to a desired attitude or in the correct orbital position
- Reaction wheels: used for attitude control
- Thrusters: used for station keeping
- Solar array drive mechanism: to keep arrays facing the sun

Equipments of ACS (cont.)

On-board processor

- Processing the information offered by sensors
 - \Rightarrow accurate data collection
 - ⇒ subsequent data interpretation
- Selecting proper actuator
- Short propulsive maneuvers executed in the right direction
- Attitude corrected to accomplish precise pointing

Introduction

- **Payload**
 - Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Thermal Environment

Vacuum environment

Presence of sun illumination, the temperature at S/C surface will heat up quickly

CHINA APMT

曲球

- Absence of sun illumination especially during sun eclipse, it will fall down extremely
- Variation of solar irradiation
 - Daily and annually
 - ➤ Eclipse

Why Thermal Control

CHINA APMT

Thermal control

- Can be composed both of passive and active items
- Protecting the equipment from too hot temperatures
 by thermal insulation from external heat fluxes
 or by proper heat removal from internal sources
- Protecting the equipment from too cold temperatures
 by thermal insulation from external sinks
 by enhanced heat absorption from external sources
 or by heat release from internal sources

✤ Reference

http://www.tak2000.com/data/Satellite TC.pdf

How Thermal Control

CHINA APMT

Methods

Reflection

⇒ optical solar reflector, thermal control coating

Insulation

⇒ multi-layer insulation for external surface

Radiation

⇒ radiators on external N/S side to reject heat to space

Heating

heaters for propellant lines, thrusters, main engine, and other equipments from too cold environment

Conduction

heat pipe spreading out heat generated by HPA and other internal active parts

Passive Thermal Control

✤ MLI

- Multi-layer Insulation
- Protecting spacecraft from excessive heating and cooling

- ✤ OSR
 - Optical Solar Reflectors
 - Improving heat rejection capability of the external radiators
 - Reducing absorption of external solar flux
- Coating
 - Changing thermo-optical properties of external surfaces
- Thermal fillers
 - Improving thermal coupling at selected interfaces
- Thermal doublers
 - Spreading heat dissipation under unit and on the radiator surface

Active Thermal Control

- Thermostatically controlled resistive electric heaters
 - Keeping equipment temperature above its lower limit during the mission cold phases

- Fluid loops
 - Transferring the heat dissipated by equipment to the radiators
 - Single-phase loop, controlled by a pump
 - Two-phase loops, composed of heat pipes (HP), loop heat pipes (LHP) or capillary pumped loops (CPL)
- Thermoelectric coolers
- Louvers
 - Changing heat rejection capability as a function of temperature

Introduction

- **Payload**
 - Antenna

Transponder (LNA, D/C, IMUX, LCTWTA and OMUX)

CHINA APMT

Bus

TC&R Subsystem Electrical Power Subsystem Attitude Control Subsystem Thermal Control Subsystem Propulsion Subsystem

Propulsion Subsystem

CHINA APMT

Conventional propulsion subsystem

Fuel and tanks

⇒ launch mass: S/C weight at the beginning of life

⇒ dry mass: S/C weight at the end of life

- Pipes and valves
- Thrusters

⇒ keeping spacecraft in its assigned place in orbit
 ⇒ unloading momentum wheels

➤ Main engine

 \Rightarrow bringing the spacecraft to its permanent position

- Thermal control
 - Monitoring component temperatures of propulsion subsystem
 - Preheating tanks and thrusters in preparation for a spacecraft maneuver

Function

- Generating thrust and providing impulse
 - Firing at transfer orbit to achieve GEO orbit
- Providing impulse, maintaining S/C attitude and orbital position
 - During GEO operations
- Providing minimum impulse bits
 - During normal mode operation
 - For momentum wheel unloading
- Providing velocity change and attitude control
 - During station keeping maneuvers

Functional Parts

Pressure supply and regulation

- Helium tanks
 - ⇒ providing helium gas as pressurant
- Pressure regulation
 - pressurizing and regulating, valve checking and latching, helium filtering

CHINA APMT

- Propellant storage and distribution
 - Propellant storage
 - ⇒ propellant tanks and management devices
 - Propellant distribution

⇒ pipes to LAE and thrusters

- Thrusters and main engine
 - ≻ LAE

⇒ liquid apogee engine

16 thrusters

⇒ for attitude and orbit control

Page 43

LAE and Thruster Plumes

CHINA APMT CHINA APMT Propulsion types gas chemical electrical

liquid

bipropellant

solid

mono-

propellant

AsiaSat: Customer Training Materials, April 2004 Wikipedia

CHINA APMT

Thanks!

Welcome to my homepage

www.satcomengr.com