

Satcom ABC series (1)

Godfather of Satcom

- ✤ A landmark scientific paper
 - Extra-terrestrial Relays
 - -- Can Rocket Stations Give Worldwide Radio Coverage?
 - \Rightarrow by Arthur C. Clarke
 - \Rightarrow published at Wireless World, 1945
 - ⇒ <u>http://lakdiva.org/clarke/1945ww/1945ww</u> oct_305-308.html
 - the concept about intercontinental radio relay communication by GEO satellites
- The Clarke Orbit
 - GSO (geosynchronous orbit)
 - GEO (geostationary earth orbit)
- Satellite communication
 - successfully demonstrated in the 1960's
 - more applications in the late 70's and early 80's

Godfather of Satcom (cont.) CHINA APMT

- Sir Arthur C. Clarke
 - Dec. 1917 (England) March 2008 (Sri Lanka)
 - As a radar specialist in RAF of UK during World War II
 - As a scientist
 - \Rightarrow the Assistant Editor for Science Abstracts, UK
 - ⇒ the Professorship of the Physical Research Laboratory, India,
 - ⇒ the Fellowship of King's College, London,
 - ⇒ the Chancellor of the University of Moratuwa, Sri Lanka
 - As a science fiction writer
 - ⇒ dozens of published Essays, short stories and novels (1937 to 2006)
 - ⇒ an Oscar nomination in 1969 for his screenplay of 2001: A Space Odyssey
 - ⇒ <u>http://www.arthurcclarke.net/?scifi=1&type=0</u>
 - ⇒ Knight of the British Empire
 - ⇒ an asteroid was named in Clarke's honour, (4923 Clarke)
 - Epitaph: He never grew up, but he never stopped growing
 - Homepage: <u>http://www.arthurcclarke.net</u>

Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna Space Segment **Communication Satellite Frequency and Polarization Plan Transponder and Transmission Loss** Earth Segment **Carrier and Network** Earth Station and VSAT Terminal

Decibel

CHINA APMT

Notation

- Normalized notation
 - ⇒ absolute value: 30000000, 0.0000003
- Exponential notation or scientific notation
 Index number: 3 x 10⁸, 3 x 10⁻⁸
- Logarithmic notation

⇒ logarithm, decibel: 84.8dB, -75.2dB

- Decibel
 - ≻ dB

⇒ a logarithmic unit of measurement

 \Rightarrow 10 times the common logarithm (to base 10)

- To represent a very large range (ratio or exact value) as a convenient number
- To simplify addition and subtraction operation to multiplication and division

CHINA APMT

Frequently-used data

absolute value	logarithm	logarithm	absolute value	
2	3dB	2dB	1.6	
3	4.8dB	1dB	1.3	
5	7dB	0.5dB	1.1	
7	8.5dB	0.2dB	1.05	
20	13dB	-0.2dB	0.95	
300	24.8dB	-0.5dB	0.9	
5000	37dB	-1dB	0.8	
70000	48.5dB	-2dB	0.6	

Decibel (cont.)

Simplified operation

> Example

CHINA APMT

Cascaded gain

 $G_{Total} = G_1 * G_2 * G_3 = G_{dB1} + G_{dB2} + G_{dB3}$

Power density

 $P_0 = P / BW (W/Hz) = P_{dBW} - BW_{dBHz} (dBW/Hz)$

Count by Frequently-used data

36MHz = 2x2x3x3x1000000 (Hz) = 3+3+5+5+60 (dBHz)

Decibel (cont.)

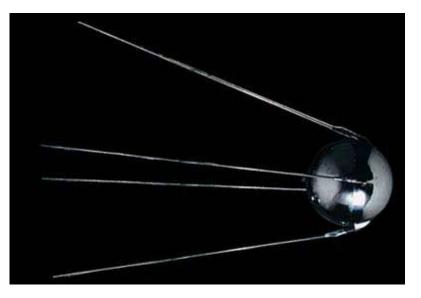
dB in satellite communication

- > Unit for gain or loss: $G = P_2 / P_1$, $G_{dB} = 10 \log_{10} (P_2 / P_1)$
- Unit for power

 \Rightarrow dBW: power relative to 1 watt, 1W = 0dBW

 \Rightarrow dBm: power relative to 1 milliwatt, 1mW = 0dBm, 0dBW = 30dBm

- ➤ Unit for bandwidth: 10Hz = 10dBHz, 1MHz = 60dBHz
- Unit for temperature: 50 Kelvin = 17dBk, 300 Kelvin = 24.8dBk
- Unit for antenna gain
 - ⇒ dBi: the forward gain of an antenna compared with the hypothetical isotropic antenna, which uniformly distributes energy in all directions
- Unit for density: 50Watt /10MHz = 17dBW 70dBHz = -53dBW/Hz
- Unit for reference value
 - ⇒ dBc: decibels relative to carrier, the power ratio of a carrier to another, or the desired signal to unwanted spurious outputs


Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna Space Segment **Communication Satellite Frequency and Polarization Plan Transponder and Transmission Loss** Earth Segment **Carrier and Network** Earth Station and VSAT Terminal

Artificial Satellites

The first artificial satellite

- ➢ Sputnik 01 (also called PS1)
 ⇒ The Soviet Union
 ⇒ Launch date: 4 Oct 1957
 ⇒ Mission duration: 21 days
 ➢ Orbital parameters
- Perigee/Apogee: 227/945 km
 ⇒ Inclination: 65 deg
 ⇒ Period: 96.1 min
- Specifications
 - ⇒ Dimension: 58 cm (diameter)
 - ⇒ Mass at launch: 83.6 kg
 - \Rightarrow Frequencies: 20.005 & 40.002 MHz

Artificial Satellites (cont.)

The first artificial satellite of USA

Explorer-I (also called Satellite 1958 Alpha)

⇒ Launch date: 31 Jan 1958

 \Rightarrow Mission duration: 111 days

- Orbital parameters
 - ⇒ Perigee/Apogee: 360/2535 km
 ⇒ Inclination: 33 deg
 ⇒ Period: 114.9 min
- Specifications

⇒ Mass at launch: 13.9 kg

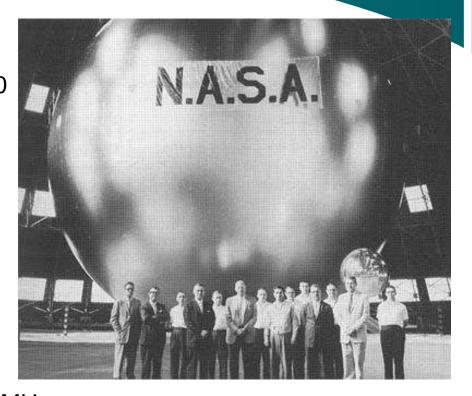
⇒ Frequency: 108 MHz

⇒ Transmitter power: 60mW (30 days) & 10mW (105 days)

- Onboard instruments: cosmic ray detector, temperature sensors, etc.
- Discovery: Van Allen radiation belt (the belts consists of energetic charged particles around the Earth)

The History of Comsat

The first satellite communication test


- ➤ SCORE, USA
 - ⇒ Launch date: 18 Dec 1958
 - ⇒ Mission duration: 34 days
 - (the batteries lasted 12 days)
- ➢ Orbital parameters
 ⇒ Perigee/Apogee: 183/1481 km
 ⇒ Inclination: 32 deg
 ⇒ Period: 110.5 min
- Specifications
 - \Rightarrow Mass of payload: 68 kg (at the
 - top of the Atlas missile)
 - ⇒ Frequency: 108 MHz

- ⇒Transmitter power: 60mW (30 days) & 10mW (105 days)
- Real-time and store-and-forward (by 2 tape recorders) repeater for orbiting relay communications

Passive balloon satellite

- ➤ Echo 1, USA
 ⇒ Launch date: 12 Aug 1960
- ➢ Orbital parameters
 ⇒ Perigee/Apogee: 1524/1864 km
 ⇒ Inclination: 47.2 deg
 ⇒ Period: 118.3 min
- ➢ Specifications
 ⇒ Diameter: 30.5 m
 ⇒ Mass: 180 kg
 ⇒ Beacon frequency: 107.9 MHz

Aluminum surface acting as a passive reflector, to bounce off the microwave signals (telephone, radio and TV signals modulated at 960 and 2390 MHz)

The first active microwave communication satellite

- ➤ Telstar 1, NASA, USA
 ⇒ Launch date: 10 July 1962
- ➢ Orbital parameters
 ⇒ Perigee/Apogee: 952/5933 km
 ⇒ Inclination: 44.8 deg
 ⇒ Period: 157.8 min
- Specifications
 - ⇔Diameter: 0.88 m
 - ⇔Mass: 77 kg
 - \Rightarrow Up- and down-link frequency: 6 and 4 GHz
 - ⇔ Antenna: Omni
 - ⇒ One television channel or multi-telephone circuits
- Moving across the sky at up to 1.5 deg/sec, and the communication period is about 20 minutes in each 2.5 hour

The first GSO communication satellite

- Syncom 2, NASA, USA
 - ⇔ Launch date: 26 July 1963
- Orbit slot: 55W/26W/28.5E
- Bus
 - \Rightarrow Spin stabilized
 - ⇒ Dimension: 0.71m (diameter), 0.39m (height)
 - ⇔ Mass: 68 kg
 - \Rightarrow DC power: 29 W
- Two transponders
 - \Rightarrow Up- and down-link frequency: 7360 and 1815 MHz
 - ⇒ BW: 13MHz (low quality TV) and 5MHz (110ch telephone/fax)
 - ⇔TWTA: 2 W
 - ⇒ Slotted dipole antenna: 2dBi (gain), 25deg (beam width)
- 32.7deg inclined rather than geostationary, the sub-satellite track looks like "8", and tracking antenna is needed in ES

The first GEO communication satellite

- Syncom 3, NASA, USA
 - ⇒ Launch date: 19 Aug 1964
- Orbit slot: 64W/180E/25W/165E/6W
- Bus and Payload: same as Syncom 2
- TV transmission for Tokyo Olympic Games

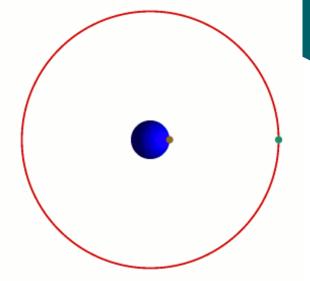
the first commercial communications satellite

Intelsat 1 (nicknamed Early Bird)

⇒ Launch date: 6 March 1965
 ⇒ Mission duration: 3.5 Years

- Orbit slot: 28W/38W
- ≻ Bus
 - ⇒ HS 301, Spin stabilized
 ⇒ Dimension: 0.76m (diameter), 0.59m (height)
 ⇒ Mass: 149 kg
 ⇒ DC power: 40 W
- ➤ Two transponders ⇒ BW: 50MHz
 - ⇒TWTA: 6 W

- ⇒ 240 voice circuits or one TV channel, the capacity of cross-Atlantic communication was increased for about 50%
- Page 17 > The first transoceanic live TV broadcast



Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna Space Segment **Communication Satellite Frequency and Polarization Plan Transponder and Transmission Loss** Earth Segment **Carrier and Network** Earth Station and VSAT Terminal

Geostationary Earth Orbit

- Geosynchronous orbit
 - > GSO
 - Orbital period: one sidereal day, matching the earth's rotation period
- Geostationary earth orbit
 - ≻ GEO
 - A circular geosynchronous orbit at zero inclination
- Orbital velocity and attitude
 - Balance: between centripetal force and centrifugal force
 - Mean earth radius: 6378km
 - Velocity: 11040km/h or 3.07km/s
 - Attitude of GEO orbit: 35786km

GEO Satellite

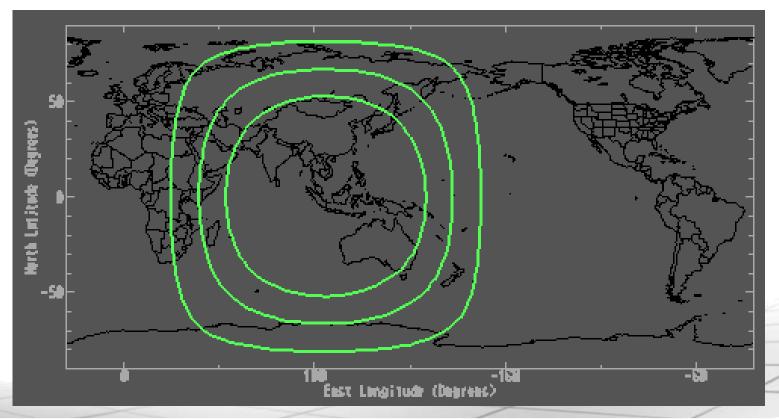
GEO satellite

- > Appearing fixed above the surface of the earth
- Seeing the earth at GEO, the angular diameter is about 17.4 degrees
- Proper orbited 3 GEO satellites can cover almost whole surface of the earth
- GEO communication satellite
 - Microwave relay communication
 - As a repeater: receiving the signals from the earth, and then retransmitting them back to the earth

earth radius = 6,370 km

CHINA APMT

Geostationary Satellite 35,800 km altitude 🕢


17.4°

The service area of the GEO satellite at 105.5E

Green lines are relative to the coverage with 0, 15 and 30 degrees elevation

- > 0 elevation coverage is up to 80 degrees latitude
- Projection method of the figure is EquiRectangular

GEO Satellite Communication CHINA APMT

✤ Wide coverage

- Suitable for broadcasting
- Same cost for long or short communication distance
- Easy for network expansion and emergency terminal setting
- Difficult to find interference resource
- Long distance
 - One-way transmitting (up- or down-link) about 37000 to 41000 km
 - Long time-delay

⇒ one-hoop needs about 1/4 sec

Huge transmission loss

⇒ 200/196 dB loss for C-band up/down-link ⇒ 207/206 dB loss for Ku-band up/down-link

GEO Satellite Communication (cont.)NA APMT

High frequency

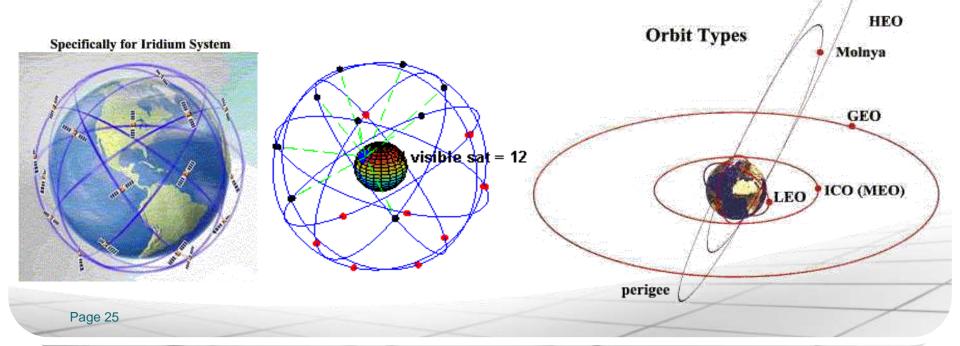
- Wider frequency band and more capacity
- Rain attenuation existed in Ku- and Ka-band
- High costs in configuration and operation
 - Transponder (bandwidth resource and power resource)
 - Antennas and earth station equipments
 - (Network management system)
 - Installation costs for the network and earth stations

Classifications

CHINA APMT

✤ By service

- ➢ FSS, Fixed Satellite Service
- BSS, Broadcasting Satellite Service
- ➤ MSS, Mobile Satellite Service
- By frequency band
 - L-band, 1-2 (or 0.39-1.55) GHz, mobile communication and radio broadcast
 - S-band, 2-3 (or 1.55-5.2) GHz, mobile communication and TV broadcast
 - C-band, 4-6 (or 3.7-6.2) GHz, fixed communication and radio broadcast
 - > X-band, 7-8 (or 5.2-10.9) GHz, fixed communication
 - Ku-band, 10-14 (or 10.7-18) GHz, fixed communication and direct-to-home TV broadcast
 - Ka-band, 17-31 (or 18-40) GHz , fixed and mobile communication

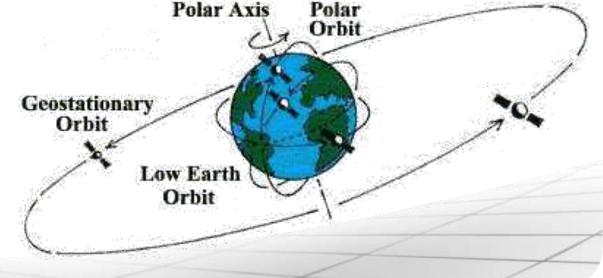

Page 24

Classifications (cont.)

✤ By orbit

- ➤ Height
 - ⇒ LEO, low earth orbit, 700 to 1400 km attitude, 40⁺ satellites for global coverage

- ⇒ MEO, medium earth orbit, 10000 to 15000 km, 10 to 15 satellites for global coverage
- ⇒ HEO, highly elliptical orbit, 500⁺ km perigee with 50000⁺ km apogee


Classifications (cont.)

✤ By orbit (cont.)

- Shape
 - \Rightarrow eccentricity: circular orbit and elliptical orbit
 - ⇒ orbit: equatorial orbit, inclined orbit, polar orbit (also called sunsynchronous orbit)

≻ GEO

- ⇒ geostationary earth orbit
- \Rightarrow circular pro-grade orbit in the equatorial plane
- ⇒ orbital period equal to that of the earth

Classifications (cont.)

By Payload

- Transparent channel
 - ⇒ also called bent pipe payload
 - ⇒ receiving and transmission
- On-board processing
 - \Rightarrow also called regenerative payload
 - ⇒ receiving, regeneration (demodulation, rearrangement and remodulation) and then re-transmission

CHINA APMT

Store-and-forward

⇒ receiving, store, and then re-transmission

 \Rightarrow normally used for LEO and MEO

Introduction

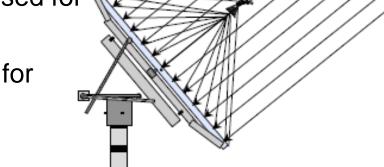
Decibel History of Satellites GEO Satellite Communication Antenna

Space Segment

Communication Satellite

Frequency and Polarization Plan

Transponder and Transmission Loss

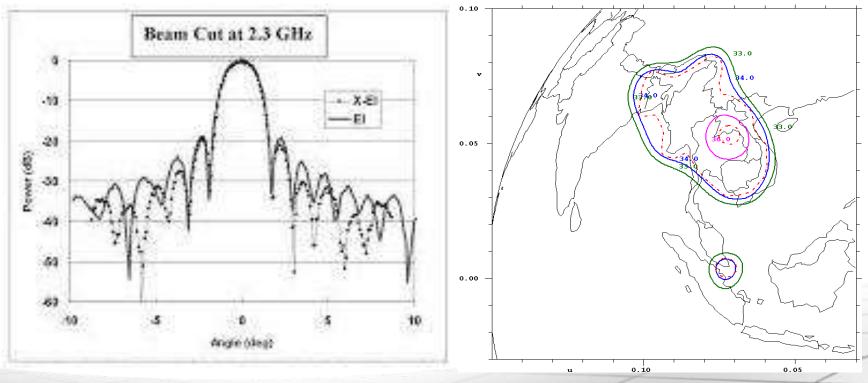

Earth Segment

Carrier and Network

Earth Station and VSAT Terminal

Reflector Antenna

- Directional antenna
 - Focus the signal energy for overcoming transmission loss
 - Parabolic reflector antenna: used for earth stations
 - Beam forming antenna: used for communication satellites
- ✤ Antenna gain


- Ratio of radiated power in a given direction relative to that of an isotropic antenna
- > The unit of antenna gain is dBi, where i means isotropic
- > Antenna gain is proportional to the square of signal frequency
- Antenna gain of a parabolic reflector antenna is proportional to the square of the diameter of the reflector

Reflector Antenna (cont.)

Antenna radiation pattern

> The distribution of antenna gain at an angular coordinate

- Parabolic reflector antenna: by the coordinates of azimuth angle and elevation angle
- Beam forming antenna: by contour map

Parabolic Reflector Antenna

Antenna gain

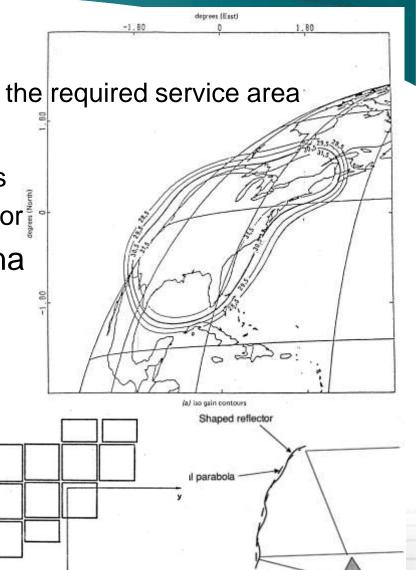
 $G = 10 lg(\eta (\pi fD/c)^2)$ (dBi)

where, f is frequency, D is diameter, η is efficiency, and c is light speed

CHINA APMT

It is proportional to the square of signal frequency

- It is proportional to the square of diameter of the reflector
- Frequently used data


C-band	6175MHz	3950MHz	Ku-band	14.25GHz	12.5GHz
Diameter (m)	U/L (dBi)	D/L (dBi)	Diameter (m)	U/L (dBi)	D/L (dBi)
1.8	40	36	1.2	43	42
2.4	42	39	1.8	47	45
3	44	41	2.4	49	48
4.5	48	44	3	51	50
6.2	51	47	4.5	55	54

Beam Forming Antenna

- Why beam forming
 - To form the antenna pattern as the required service area
- How beam forming
 - Single reflector with multi-feeds
 - Single feed with shaped reflector
- Relationship between antenna pattern and transponder

parameters

- The receive pattern is relative to G/T and SFD
- The transmit pattern is relative to EIRP

Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna **Space Segment Communication Satellite** Frequency and Polarization Plan **Transponder and Transmission Loss** Earth Segment **Carrier and Network**

Earth Station and VSAT Terminal

Communication Satellite

Two main parts

- Payload: communication subsystem
- Bus: platform

Payload

- Antennas
- Transponders

⇒ transponder = trans(mitter) + (res)ponder

⇒ repeater: to receive, amplify and retransmit the incoming signals

CHINA APMT


✤ Bus

- Telemetry and command subsystem
- Electrical power subsystem
- Attitude control subsystem
- Thermal control subsystem
- Propulsion subsystem

Communication Satellite (cont.) CHINA APMT

Orbital slot

- Longitude
- ➤ 128.5E for LaoSat-1
- Frequency band
 - ➤ C-band, 500+300+300 MHz
 - ➤ Ku-band, 500+250+500 MHz
 - ➤ Ka-band, 500+2000 MHz
- Footprint
 - Service coverage for given frequency band
 - Determined by antenna beam forming

Introduction

Decibel History of Satellites GEO Satellite Communication

Antenna

Space Segment

- **Communication Satellite**
- **Frequency and Polarization Plan**
- **Transponder and Transmission Loss**

Earth Segment

- **Carrier and Network**
- **Earth Station and VSAT Terminal**

Frequency Band

CHINA APMT

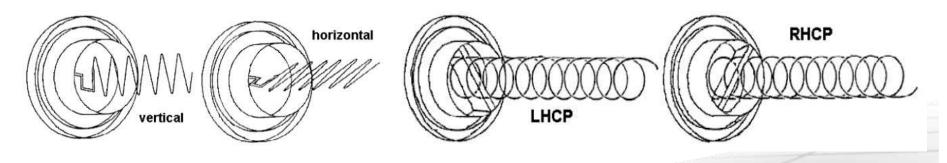
Up-link and down-link

➢ Up-link

 \Rightarrow U/L, the carrier from earth station to satellite

- Down-link
 - \Rightarrow D/L, the carrier from satellite to E/S
- U/L and D/L using different frequencies
 to avoid interference with each other
- ➤ U/L frequency is normally higher than that of D/L
 ⇒ higher gain for receiving antennas
 - \Rightarrow smaller size for traveling wave tube and TWTA in E/S

Frequency Band (cont.)


- Common frequency bands for FSS
 - C-band: 5850-6425MHz (U/L) and 3725-4200MHz (D/L)
 - Expand C-band: 6425-6725MHz/3400-3700MHz
 - Ku-band: 14.0-14.5GHz/12.25-12.75GHz (for ITU region 3)
 - > Ka-band: 27.5-31.0GHz/17.7-21.2GHz
- Common frequency bands for BSS
 - Ku-band: 14.5-14.8GHz/11.7-12.2GHz (for ITU region 3)
 - > Ka-band: 17.3-17.8GHz (U/L, for ITU region 3)

Polarization

CHINA APMT

Polarization

- The orientation of electromagnetic fields radiating
 Inear polarization and circular polarization
- Linear polarization
 - ⇒ cross-pol or mutual orthogonal: horizontal and vertical
- Circular polarization
 - ⇒ cross-pol or mutual orthogonal: LHCP (left hand circular polarization) and RHCP (right hand circular polarization)
- Orthogonal polarization frequency reuse
 Spectrum resource could be double used by cross polarization

Polarization (cont.)

Common polarization for FSS

Linear polarization

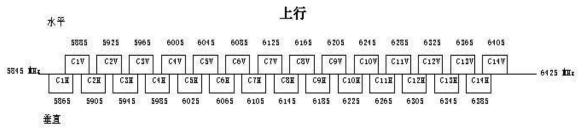
⇒ often used by regional and domestic communication satellites

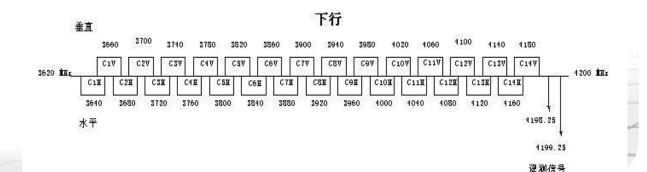
CHINA APMT

Circular polarization

⇒ often used by INTELSAT satellites in C-band

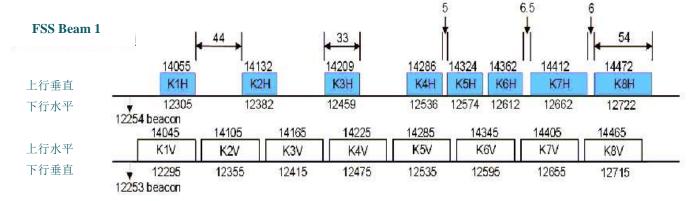
- Common polarization for BSS
 - Circular polarization

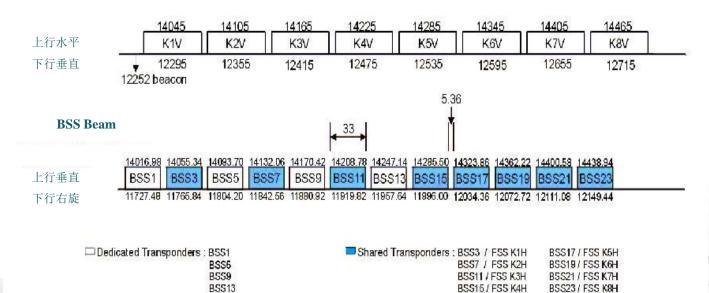

⇒ assigned for BSS bands by ITU


Linear polarization

⇒ could also reassigned for BSS bands

Frequency and Polarization PlanHINA APMT


- Whole frequency band of a communication satellite is normally divided into several sub-bands or channels
 - Each channel (also called transponder) is consisted by one set of amplifiers and filters as an independent path
 - Two cross-pol channels could share same frequency band
 - The bandwidth of C-band transponder is about 36 or 72MHz



Frequency and Polarization Plan (cohter) APMT

The bandwidth of Ku-band transponder is about 54 or 36MHz

FSS Beam 2

Introduction

Decibel History of Satellites GEO Satellite Communication

Antenna

Space Segment

Communication Satellite

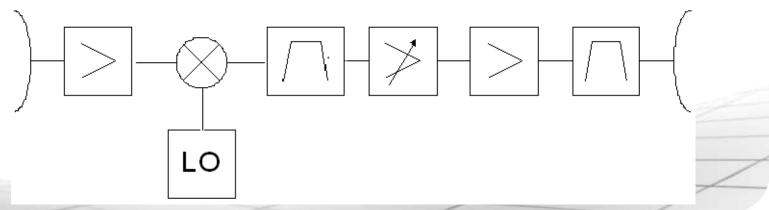
Frequency and Polarization Plan

Transponder and Transmission Loss

Earth Segment

Carrier and Network

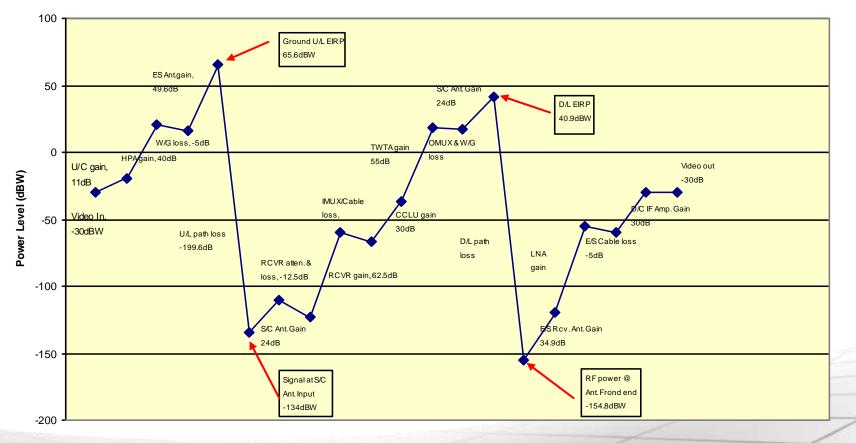
Earth Station and VSAT Terminal


Transponder

- Bent pipe transponder
 - Signal is only filtered, frequency converted and amplified in it
 (up-link signals in the service area is received by Rx-antenna)
 signals are pre-amplified by LNA
 - ⇒ U/L frequency is converted to D/L frequency by down-converter

CHINA APMT

- ⇒ relevant frequency component is selected by input BPF
- signal level is properly amplified by channel amplifier with the adjusted gain
- ⇒ output signal is amplified by power amplifier
- ⇒ out-of-band interference is filtered by output BPF to protect the adjacent channels


⇒ (down-link signals is directionally transmitted by Tx-antenna)

Transponder (cont.)

- Bent pipe transponder (cont.)
 - Nearly 200dB gain to counteract the huge free space loss

The Signal Level change through the S/C C-band communication link

Transmission Loss

Transmission loss in free space

 $L_{\rm f} = (4\pi d \ /\lambda)^2$

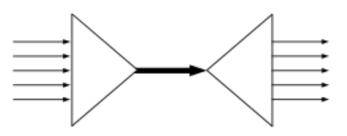
 $L_{f-dB} = 10 lg (4\pi d/\lambda)^2 = 20 lg (4\pi d/\lambda) (dB)$

where, d is distance (meter), and I is wavelength (the ratio of light speed to signal frequency)

CHINA APMT

 $\lambda = c/f = 3 \times 10^8 / f$ (m)

- It is proportional to the square of signal frequency
- > It is proportional to the square of transmission distance
- Free space loss at the distance of 36000km
 - ⇒195.6dB at 4GHz
 - ⇒199.1dB at 6GHz
 - \Rightarrow 205.2dB at 12GHz
 - \Rightarrow 206.5dB at 14GHz

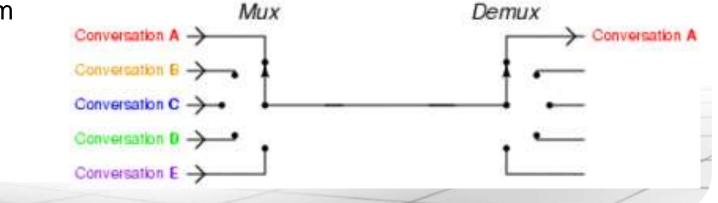

Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna Space Segment **Communication Satellite Frequency and Polarization Plan Transponder and Transmission Loss** Earth Segment **Carrier and Network** Earth Station and VSAT Terminal

Multiplexing

✤ Multiplex

- Physical layer, layer 1 of OSI (Open Systems Interconnection) model
- Multiplexing low data rate signals over a single high data rate link
- Multiplexing narrow band carriers over a wide band common channel



CHINA APMT

✤ TDM

- Time-division multiplexing
- Sequencing groups of input digital data into one multiplexed stream

 Mux
 Demux

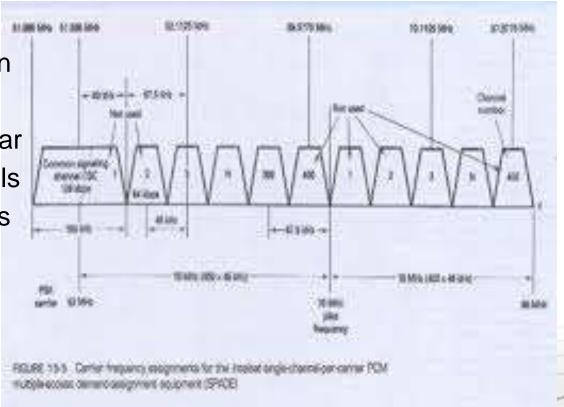
Multiplex (cont.)

✤ FDM Schutzbänder Frequency-division signal 1 multiplexing Signal 2 combining several signals (analog or 10 20 kHz Signal 3 digital) into one 300 - 3400 Hz 20 kHz medium by sending signals in several distinct frequency ranges Frequency

✤ OFDM

OFDM: Sub-carriers are closely spaced until overlap.

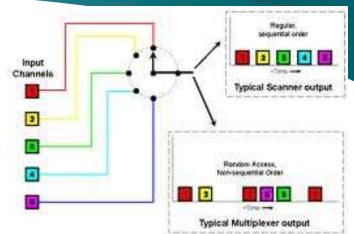
- Orthogonal frequency division multiplexing
- Sub-carriers are orthogonal each other
- Inter-carrier guard bands are not required

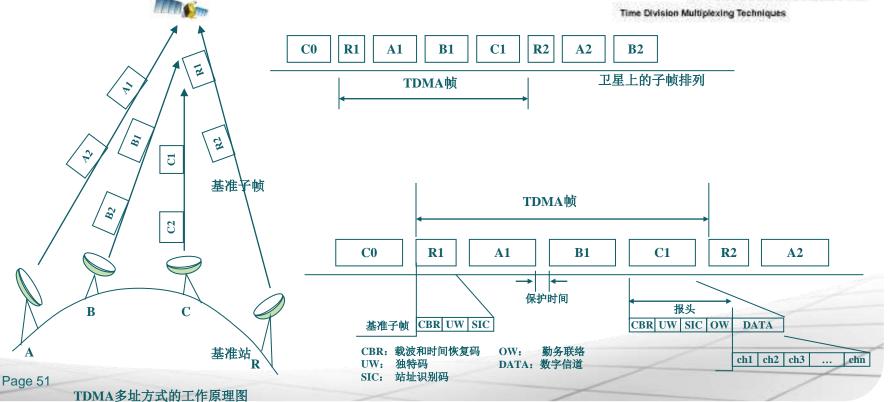

Multiple Access

Multiple Access

- Data link layer, layer 2 of OSI model
- One channel shared by several signals and offering multipoint transmission

FDMA

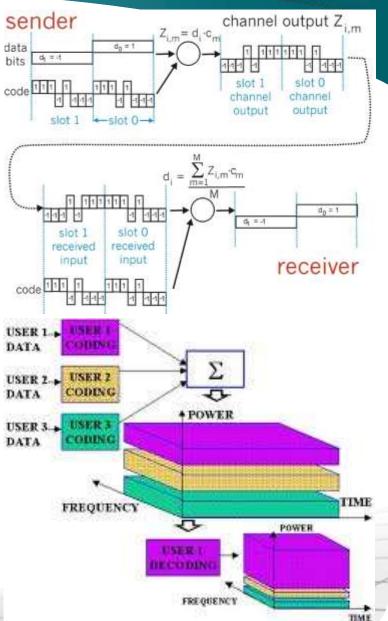

- Frequency division multiple access
- Assigning particular frequency channels to different carriers



Multiple Access (cont.)

TDMA

- Time division multiple access
- To provide different time-slots to different data-streams in a cyclically repetitive frame structure



Multiple Access (cont.)

CDMA

- Code division multiple access: a kind of spread-spectrum multiple access
- Signals encoded by unique spreading codes (orthogonal to others)
- Spread-spectrum signals sharing a frequency band simultaneously
- Each signal behaving like noise to others
- The paired transmitters and receivers recognize their assigned and correlated code sequences, which look to all others as pseudorandom noise

Multiple Access (cont.)

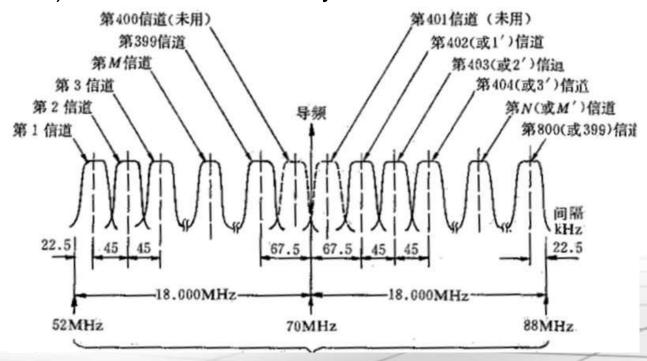
Brief summary

- FDMA: each carrier assigned fixed frequency band continually, desired channel filtered out by BPF
- TDMA: each station utilizing allocated time slot in data frame cyclically, relative data stream picked up by synchronous technique

CHINA APMT

CDMA: all users share same frequency band simultaneously, required data encoded

by unique code


Carrier

FDM/FM/FDMA

Analog voice signals combined onto a group carrier by FDM, modulated as a FM carrier, then transmitted by FDMA

SCPC/FDMA

SCPC (single channel per carrier, a signal at a given frequency band) carriers transmitted by FDMA

Carrier (cont.)

TDM/PSK/FDMA

Digital voice signals or data combined by TDM, modulated as a PSK carrier, then transmitted by FDMA

- IDR: intermediate data rate
- IBS: Intelsat business service
- TDM/PSK/TDMA
 - Digital voice signals or data combined by TDM, modulated as a PSK carrier, then transmitted by TDMA
 - DVB: digital video broadcasting
 ⇒ MCPC (multi channel per carrier)
 ⇒ broadcast, multicast, unicast

Network

Point to point

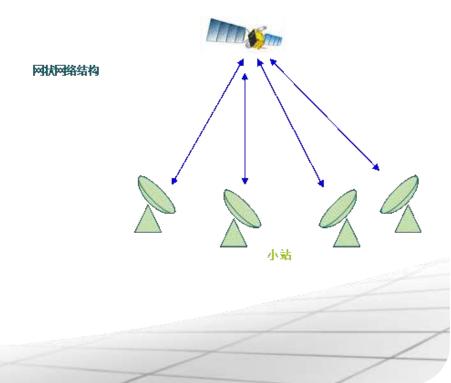
Communication carrier from one earth station to another

CHINA APMT

小站

TTA

点到多点的单向广播


- Carriers between two earth stations
- ➢ FDM/FM/FDMA, SCPC/FDMA,
 - TDM/PSK/FDMA
- Star network
 - Broadcasting
 - ⇒TV or data, one way
 - Intercommunication
 - ⇒ single hop between hub and remote
 - ⇒ double hop between two remotes
 - TDM/PSK/TDMA
 - ⇒ DVB, DVB-RCS (return channel via satellite), Hughes-PES

Network (cont.)

Mesh network

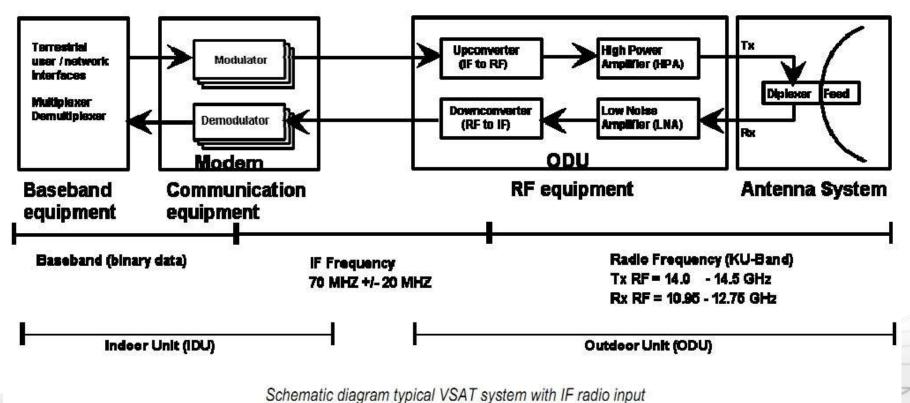
- With or without hub station
- Single hop, short delay
- Higher efficiency in bandwidth
- More complicated and expensive for network management system
- TDM/PSK/FDMA
 - \Rightarrow Hughes-TES

Introduction

Decibel **History of Satellites GEO Satellite Communication** Antenna Space Segment **Communication Satellite Frequency and Polarization Plan Transponder and Transmission Loss** Earth Segment **Carrier and Network**

Earth Station and VSAT Terminal

Earth Station


CHINA APMT

Uplink

(BB) - MOD (IF) - U/C (RF) - HPA - antenna - satellite

Downlink

Satellite - antenna - LNA (RF) - D/C (IF) - DEMOD (BB)

Earth Station (cont.)

Satellite control station

- Telemetry processing
- Manual and automatic commanding
- On-board software management
- Mission archive and web-based data distribution

✤ Teleport

- Broadband hub or gateway station
- Connecting satellite circuits with terrestrial fiber
- Providing TV, Internet and enterprise network connections

Earth Station (cont.)

conference

✤ VSAT

- Very small aperture terminal
- 3.8m or less antenna
- Out-door transceiver
- In-door modem and interface
- Home and business services

PAB)

Fax

conference

LANWAN

CHINA APMT

PABX

Reference:

AsiaSat: Customer Training Materials, April 2004 Wikipedia GVF: VSAT Installation & Maintenance Training

CHINA APMT

Thanks!

Welcome to my homepage

www.satcomengr.com